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Abstract

We obtain a necessary and sufficient condition for the lacunary polynomials to be dense in weighted
LP spaces of functions on the real line. This generalizes the solution to the classical Bernstein problem
given by Izumi, Kawata and Hall.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we will study weighted lacunary polynomial approximation that generalizes
the classical Bernstein problefi2]. First we introduce some notations for convenience of
the readers before we state our main results.

Let aweighta be an even nonnegative function continuoudsuch that
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Consider the Banach spaces
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Coy= {f eCR): lim [f(O)le ™ =0,|flls= SUD{If(t)e‘“(”I}} :
|t]—+00 teR

The classical Bernstein problem is to find out whether the polynomials are dedse in
Several solutions are proposed by mathematid&s9,10,14]. For the surveys on it see
[1,11,14] and for the recent progress see Borichev [4,5]. Here we are interested in the
results obtained by Izumi and Kawata [10] and by Hall [9]. We can formulate their results
as follows:

Theorem A. Suppose that(z) is an even nonnegative function satisfy{dyanda(e’) is
convex orR. Then a necessary and sufficient condition for the polynomials to be dense in
the space’,, is

+00 OC(I) B
/_OO 1+lzdt_oo. (2)

We note that Koosi§l1] pointed out that Theorem A holds wiil¥ instead ofC, and
the proof is essentially the same.

Inspired by Mintz Theorem [6], it is natural to consider the density of the lacunary
polynomials in the spade andC,. Denote byM (A) the space of the lacunary polynomials
which are finite linear combinations of the systerﬁ : A e A},whereA = {1, : n =
1,2, ...}isasequence of increasing nonnegative integers. Our condition (1) guarantees that
M (A) is a subspace df!, andC,, we then ask whethe¥ (A) is dense in.% andC, in the
respect norms—this is so-called the generalized Bernstein problem on weighted lacunary
polynomial approximation.

Motivated by the classical Bernstein problem and Malliavin’s method [13], we find a
necessary and sufficient condition for the generalized Bernstein problem. We state our
main conclusions as follows:

Theorem 1. Suppose that(¢) is an even nonnegative function satisfy{ayanda(e’) is a
convex function of®. LetA = {4, : n = 1,2, ...} be a sequence of increasing nonnegative
integers. Them (A) is dense inL% (1< p < +o00) if and only if
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for eacha € R, where
1
ary=2 > T 1200 4 =0, < g, 4
In <rom odd
1
Jary=2 ) T2 da(r) =0, < a. (5)

In <1yl even 7
Remark 2. Theorem 1 holds fo€, with A J{O} instead ofA. If A = N = {1,2,.. .},
thenli(r) = A2(r) = log r + O(1)(r — o0) and hence condition (3) is equivalent to (2).
Therefore Theorem A follows from our theorem.
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In one previous pap48] , we conjectured that the condition

+00 _
/ oc(exp[k.gt) a}) dt = oo, ©6)
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wherek.(r) = inf{k(r’) : r'>r}, k(r) = A(r) — log* r, log"r = maxlogr, 0} and

A(r) = 21(r) + 22(r), is a necessary and sufficient condition. Thank Professor Alexander
Borichev who points out that it is not necessary and then we give condition (3) here, by
which one can easily see that condition (6) is sufficient but not necessary.

Remark 3. In[12], Kro6 and Szabados considered the weighted approximation by general
lacunary polynomials with real exponents in the space of functions continuous on the half-
axis and they proved a sufficient condition which implies (3). In fact, we can even consider
weighted approximation by more general polynomial systeim: 1 € C} on the half-

axis, but we can not do that on the whole real axis. We will discuss this problem in one
forthcoming paper.

2. Proof of Theorem 1
In order to prove Theorem 1, we need the following two technical lemmas:

Lemma 4 (Malliavin [13]). Letf(r) be a nonnegative convex functionBrsatisfying(1),
and assume that
BE(t) =sup{xt— f(x):x € R}, t € R @)

is the Young transforifi5] of the functionf(x). Suppose that(r) is an increasing function
on [0, co) satisfying

MR) — A(r)<A(og R—logr+1) (R>r>1). (8)
Then there exists an analytic functigiiz) # 0 in C. satisfying

If ()< Aexp{Ax + f(x) — xA(zD}, z=x +iy € Cy, 9)
if and only if there exista € R such that

/+°° B*(At) —a) U
0

1112 < 0. (20)

Remark 5. Lemma1is aresult of Malliavin’s uniqueness theorem about Watson’s problem
(hereafter we denote a positive constant by A, not necessarily the same at each occurrence).

Lemma 6 (Boas[3]). If A = {4, }:;"i is a sequence of positive increasing integéngn
the function

(I —2 2z
o=l (2)on(2)

n=1
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is analytic in the closed right half plan€, = {z = x + iy : x>0}, and there exists a
positive constant A such that

G| < explxi(z]) + Ax}, z=x+iy e Cy, (12)
|GA(2)| = explxi(lz]) — Ax}, z=x+iy e Z(A), (13)
whereX(A) = {z € C; : |z — 4| > 1/4} and A(r) is defined as follows:

Mry=2%" % r>Ja;r) =0,r < 1. (14)

)~n <r "
Remark 7. Lemma 5 is proved by Fuchs.
Now we will start to prove Theorem 1.

Sufficiency of Theorem 1. Firstwe can identify bounded linear functionalsidh 1< p <
+oo, with elements of.?,, £ + 1 — 1,

+oo %
LY, =3 filfllg-a= (f | f (£)e* D)4 dt) <+400y,1<q < +o0,

o0

L5, ={F 1 1F ooz = essSUP(I F (1™ : x € R} < +oo}
with the duality being

+00
(f.g) = fgx)dx, fely,geL?,

Then by Hahn—Banach theorem, we only need to prove that
(t*,g) =0,Vie A (15)
impliesg(¢) = 0 a.e. Fixg € L7, such that (15) holds. Put
g1(1) = (g(t) + g(=1))/2, g2(t) = (g(t) — g(—1))/2.
And we get thagi, g2 € Lf“ and the following relations hold:
g1(=1) = g1(1), g2(—1) = —g2(1), g(1) = g1(t) + g2(1), t € R.

Hence we turn to prove thgt (1) = g2(¢r) = 0 a.e. We associate wif the functions

+o00
fr(z) = 2/ t*gr(t)dt,Rez > 0 (k =1,2).
0

Fort > 0,t* = exp{z log ¢}, by definition. We claim thaf} is holomorphic in the right
half plane. Furthermore, (15) and the definitiorgp€z) show that

Je(A) =0, 7 € Ax (k=1,2), (16)
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whereA1 = {41 € A : Jisodd}andA, = {4 € A : Ais even}. The fact tha (1) € L,
suggests that

| @< APD 7 = x +iy e Cy, (17)
where

p(x) = sup{xlogt — a(r) : t > 0} (18)
is Young transfornj15] of the convex function(e®). Define

Fi(z2) = fi(2)/Gr(2), z = x +1iy € Cy, (19)

whereGi(z) = [])en, ﬁﬁ exp(%). Then by (13) and (17) and according to maximum
modulus principle we have that

|Fe(2) < Aexplf(x) — x/4(r) + Ax), z€Cy (k=1,2). (20)

We may assume, without loss of generality, thét) = 0. As is known[15], f(x) is a
convex nonnegative function which also satisfi¢8) = 0 and

sup{xs— f(x) : x >0} = a(e’). (21)

Now by Lemma 1, condition (3) yields th# (z) = 0 and hencefy(z) = 0 (k = 1, 2).
Thereforegy(z) = g2(t) = 0 a.e. and hencg(r) = 0 a.e. This completes the proof of
sufficiency of the theorem.

Necessity of Theorem 1.Equivalently, we prove that:
If there exist$ € R such that

/+°° oEexplz(r) — b)
1

2 t < +oo (k=1or?2), (22)

thenM (A) is not dense irl}.

Without loss of generality, we suppose (22) holds wheg 1. Let ¢(r) be an even
function such thatp(r) = a(exp{41(t) — b}) for t >0 and letu(z) be the Poisson integral
of (1), i.e.,

+00 t

Thenu(x +iy) is harmonic in the half-plan€ . and there exists an analytic functign(z)
on C, satisfying

Reg1(z) = 4u(z) > (x — D (1(|z]) —a) — f(x — 1),
wherez = x +iy,r = |z|,x > 1. Let

G1(z)
142N

go(2) = exp(—g1(z) — Nz — N}, (24)
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whereN is a large positive integer ar@; (z) is defined by (10) forA1. By (9) and (10),
we havegp(4) = 0 for 4 € A1, 4 even and

1
[go(2)1 <r|Z|2 expif(x —1) —x}, zeCy. (25)
Let
1 00 1 1.0
—00

Thenhg(z) is continuous orf0, +c0). By Cauchy contour theorem,

1 +00 .
ho(t z—f x4 iy 1gy x>0, 27
o(?) Nz go(x +iy) y (27)
We obtain from (25) and the formula of Young transform (21) that

lho(1)| < exp(—o(r) — [logz]) (28)

and hencéig(r) € L’i“. Moreover, by Mellin’s transform formula,

1 +00
90(2) = E/o ho(t)t*dt, x > 0. (29)

We extend the functiong(z) to an odd function by lettingo(t) = —ho(—1) forr < 0.
Therefore the bounded linear functional

+oo
T(h) = \/%foo ho()h(t)dt (h € LY) (30)

satisfiesT (+*) = 0 for A € A, and

2 [t " .
7] =—{f o (1[4 ¢4 dt>0} .
V2n 0

By the Hahn—Banach theorem, the Spafe\) is not dense irL5.

(If (20) holds fork = 2, then we construgio(z) by G2(z) for A; instead ofG1(z) and
then extendio(z) to an even function by lettingo(z) = ho(—1) for ¢t < 0. The rest of the
proof is similar.)

This completes the proof of theorem.

3. One conjecture

Inspired by Borichey5], we have the following conjecture:

Conjecture 8. Suppose that(¢) is an even nonnegative function satisfy{dgyanda(e’)
is a convex function ofR. Let A = {4, : n = 1,2,...} be a sequence of increasing
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nonnegative integers. M (A) is not dense irL2 (1< p < +o0), then the closure a#f (A)
consists of entire functions of exponential type z&fo) that is in L% and has the form

+o0
f@) = Z anZ}'n~

n=1
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