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Abstract

Weobtain a necessary and sufficient condition for the lacunary polynomials to be dense in weighted
Lp spaces of functions on the real line. This generalizes the solution to the classical Bernstein problem
given by Izumi, Kawata and Hall.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, wewill studyweighted lacunary polynomial approximation that generalizes
the classical Bernstein problem[2]. First we introduce some notations for convenience of
the readers before we state our main results.
Let aweight� be an even nonnegative function continuous onR such that

lim|t |→∞
�(t)
log |t | = ∞. (1)

Consider the Banach spaces

L
p
� =


f : ‖f ‖p,� =

(∫ +∞

−∞
|f (t)e−�(t)|p dt

) 1
p

< +∞

 , 1�p < +∞
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C� =
{
f ∈ C(R) : lim|t |→+∞ |f (t)|e−�(t) = 0, ‖f ‖� = sup

t∈R

{|f (t)e−�(t)|}
}

.

The classical Bernstein problem is to find out whether the polynomials are dense inC�.
Several solutions are proposed by mathematicians[1,7,9,10,14]. For the surveys on it see
[1,11,14] and for the recent progress see Borichev [4,5]. Here we are interested in the
results obtained by Izumi and Kawata [10] and by Hall [9]. We can formulate their results
as follows:

Theorem A. Suppose that�(t) is an even nonnegative function satisfying(1) and�(et ) is
convex onR. Then a necessary and sufficient condition for the polynomials to be dense in
the spaceC� is∫ +∞

−∞
�(t)
1+ t2

dt = ∞. (2)

We note that Koosis[11] pointed out that Theorem A holds withLp
� instead ofC� and

the proof is essentially the same.
Inspired by Müntz Theorem [6], it is natural to consider the density of the lacunary

polynomials in the spaceLp
� andC�. Denote byM(�) the space of the lacunary polynomials

which are finite linear combinations of the system{t� : � ∈ �}, where� = {�n : n =
1,2, . . .} is a sequence of increasing nonnegative integers. Our condition (1) guarantees that
M(�) is a subspace ofLp

� andC�, we then ask whetherM(�) is dense inLp
� andC� in the

respect norms—this is so-called the generalized Bernstein problem on weighted lacunary
polynomial approximation.
Motivated by the classical Bernstein problem and Malliavin’s method [13], we find a

necessary and sufficient condition for the generalized Bernstein problem. We state our
main conclusions as follows:

Theorem 1. Suppose that�(t) is an even nonnegative function satisfying(1)and�(et ) is a
convex function onR. Let� = {�n : n = 1,2, . . .} be a sequence of increasing nonnegative
integers. ThenM(�) is dense inLp

� (1�p < +∞) if and only if∫ +∞

1

�(exp{�1(t) − a})
t2

dt = +∞ and
∫ +∞

1

�(exp{�2(t) − a})
t2

dt = +∞ (3)

for eacha ∈ R, where

�1(r) = 2
∑

�n � r,�n odd

1

�n

, r��1; �1(r) = 0, r < �1, (4)

�2(r) = 2
∑

�n � r,�n even

1

�n

, r��1; �2(r) = 0, r < �1. (5)

Remark 2. Theorem 1 holds forC� with �
⋃{0} instead of�. If � = N = {1,2, . . .},

then�1(r) = �2(r) = log r + O(1)(r → ∞) and hence condition (3) is equivalent to (2).
Therefore TheoremA follows from our theorem.
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In one previous paper[8] , we conjectured that the condition∫ +∞

1

�(exp{k.(t) − a})
t2

dt = ∞, (6)

wherek.(r) = inf {k(r ′) : r ′ �r}, k(r) = �(r) − log+ r, log+ r = max{logr, 0} and
�(r) = �1(r) + �2(r), is a necessary and sufficient condition. Thank Professor Alexander
Borichev who points out that it is not necessary and then we give condition (3) here, by
which one can easily see that condition (6) is sufficient but not necessary.

Remark 3. In [12], Kroó and Szabados considered the weighted approximation by general
lacunary polynomials with real exponents in the space of functions continuous on the half-
axis and they proved a sufficient condition which implies (3). In fact, we can even consider
weighted approximation by more general polynomial system{t� : � ∈ C} on the half-
axis, but we can not do that on the whole real axis. We will discuss this problem in one
forthcoming paper.

2. Proof of Theorem 1

In order to prove Theorem 1, we need the following two technical lemmas:

Lemma 4 (Malliavin [13]). Let�(t) be a nonnegative convex function onR satisfying(1),
and assume that

�∗(t) = sup{xt− �(x) : x ∈ R}, t ∈ R (7)

is the Young transform[15] of the function�(x).Suppose that�(r) is an increasing function
on [0,∞) satisfying

�(R) − �(r)�A(log R − log r + 1) (R > r > 1). (8)

Then there exists an analytic functionf (z) /≡ 0 in C+ satisfying

|f (z)|�A exp{Ax + �(x) − x�(|z|)}, z = x + iy ∈ C+, (9)

if and only if there existsa ∈ R such that∫ +∞

0

�∗(�(t) − a)

1+ t2
dt < ∞. (10)

Remark 5. Lemma1 is a result ofMalliavin’s uniqueness theoremaboutWatson’s problem
(hereafter we denote a positive constant byA, not necessarily the same at each occurrence).

Lemma 6 (Boas[3]). If � = {�n}+∞
n=1 is a sequence of positive increasing integers,then

the function

G�(z) =
∞∏

n=1

(
�n − z

�n + z

)
exp

(
2z

�n

)
(11)
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is analytic in the closed right half planeC+ = {z = x + iy : x�0}, and there exists a
positive constant A such that

|G�(z)|� exp{x�(|z|) + Ax}, z = x + iy ∈ C+, (12)

|G�(z)|� exp{x�(|z|) − Ax}, z = x + iy ∈ �(�), (13)

where�(�) = {z ∈ C+ : |z − �n|�1/4} and�(r) is defined as follows:

�(r) = 2
∑

�n � r

1

�n

, r��1; �(r) = 0, r < �1. (14)

Remark 7. Lemma 5 is proved by Fuchs.

Now we will start to prove Theorem 1.

Sufficiency of Theorem 1.Firstwecan identifybounded linear functionalsonL
p
� , 1�p <

+∞, with elements ofLq
−�,

1
p

+ 1
q

= 1,

L
q
−� =


f : ‖f ‖q,−� =

(∫ +∞

−∞
|f (t)e�(t)|q dt

) 1
q

< +∞

 , 1< q < +∞,

L∞−� =
{
f : ‖f ‖∞,−� = ess sup{|f (t)|e�(t) : x ∈ R} < +∞

}
,

with the duality being

〈f, g〉 =
∫ +∞

−∞
f (x)g(x) dx, f ∈ L

p
� , g ∈ L

q
−�.

Then by Hahn–Banach theorem, we only need to prove that

〈t�, g〉 = 0, ∀� ∈ � (15)

impliesg(t) = 0 a.e. Fixg ∈ L
q
−� such that (15) holds. Put

g1(t) = (g(t) + g(−t))/2, g2(t) = (g(t) − g(−t))/2.

And we get thatg1, g2 ∈ L
p
−� and the following relations hold:

g1(−t) = g1(t), g2(−t) = −g2(t), g(t) = g1(t) + g2(t), t ∈ R.

Hence we turn to prove thatg1(t) = g2(t) = 0 a.e. We associate withgk the functions

fk(z) = 2
∫ +∞

0
tzgk(t) dt,Rez > 0 (k = 1,2).

For t > 0, tz = exp{z log t}, by definition. We claim thatfk is holomorphic in the right
half plane. Furthermore, (15) and the definition ofgk(z) show that

fk(�) = 0, � ∈ �k (k = 1,2), (16)
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where�1 = {� ∈ � : � is odd}and�2 = {� ∈ � : � is even}. The fact thatgk(t) ∈ L
p
−�

suggests that

|fk(z)|�Ae�(x), z = x + iy ∈ C+, (17)

where

�(x) = sup{xlog t − �(t) : t > 0} (18)

isYoung transform[15] of the convex function�(es). Define

Fk(z) = fk(z)/Gk(z), z = x + iy ∈ C+, (19)

whereGk(z) = ∏
�∈�k

�−z
�+z

exp(2z� ). Then by (13) and (17) and according to maximum
modulus principle we have that

|Fk(z)|�A exp{�(x) − x�k(r) + Ax}, z ∈ C+ (k = 1,2). (20)

We may assume, without loss of generality, that�(1) = 0. As is known[15], �(x) is a
convex nonnegative function which also satisfies�(0) = 0 and

sup{xs− �(x) : x�0} = �(es). (21)

Now by Lemma 1, condition (3) yields thatFk(z) ≡ 0 and hencefk(z) ≡ 0 (k = 1,2).
Thereforeg1(t) = g2(t) = 0 a.e. and henceg(t) = 0 a.e. This completes the proof of
sufficiency of the theorem.

Necessity of Theorem 1.Equivalently, we prove that:
If there existsb ∈ R such that∫ +∞

1

�(exp{�k(t) − b})
t2

dt < +∞ (k = 1 or 2), (22)

thenM(�) is not dense inLp
� .

Without loss of generality, we suppose (22) holds whenk = 1. Let �(t) be an even
function such that�(t) = �(exp{�1(t) − b}) for t �0 and letu(z) be the Poisson integral
of �(t), i.e.,

u(x + iy) = x

�

∫ +∞

−∞
�(t)

x2 + (y − t)2
dt. (23)

Thenu(x + iy) is harmonic in the half-planeC+ and there exists an analytic functiong1(z)
onC+ satisfying

Reg1(z) = 4u(z)�(x − 1)(�1(|z|) − a) − �(x − 1),

wherez = x + iy, r = |z|, x > 1. Let

g0(z) = G1(z)

(1+ z)N
exp{−g1(z) − Nz − N}, (24)
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whereN is a large positive integer andG1(z) is defined by (10) for�1. By (9) and (10),
we haveg0(�) = 0 for � ∈ �1, � even and

|g0(z)|� 1

1+ |z|2 exp{�(x − 1)− x}, z ∈ C+. (25)

Let

h0(t) = 1√
2�

∫ +∞

−∞
g0

(
1

2
+ iy

)
t−( 12+iy)−1 dy. (26)

Thenh0(t) is continuous on(0,+∞). By Cauchy contour theorem,

h0(t) = 1√
2�

∫ +∞

−∞
g0(x + iy)t−(x+iy)−1 dy, x > 0. (27)

We obtain from (25) and the formula of Young transform (21) that

|h0(t)|� exp(−�(t) − | log t |) (28)

and henceh0(t) ∈ L
q
−�. Moreover, by Mellin’s transform formula,

g0(z) = 1√
2�

∫ +∞

0
h0(t)t

z dt, x > 0. (29)

We extend the functionh0(t) to an odd function by lettingh0(t) = −h0(−t) for t < 0.
Therefore the bounded linear functional

T (h) = 1√
2�

∫ +∞

−∞
h0(t)h(t) dt (h ∈ L

p
� ) (30)

satisfiesT (t�) = 0 for � ∈ �, and

‖T ‖ = 2√
2�

{∫ +∞

0
|h0(t)|qeq�(t) dt > 0

} 1
q

.

By the Hahn–Banach theorem, the spaceM(�) is not dense inLp
� .

(If (20) holds fork = 2, then we constructg0(z) byG2(z) for �2 instead ofG1(z) and
then extendh0(t) to an even function by lettingh0(t) = h0(−t) for t < 0 . The rest of the
proof is similar.)
This completes the proof of theorem.

3. One conjecture

Inspired by Borichev[5], we have the following conjecture:

Conjecture 8. Suppose that�(t) is an even nonnegative function satisfying(1) and�(et )
is a convex function onR. Let � = {�n : n = 1,2, . . .} be a sequence of increasing
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nonnegative integers. IfM(�) is not dense inLp
� (1�p < +∞), then the closure ofM(�)

consists of entire functions of exponential type zerof (z) that is inL
p
� and has the form

f (z) =
+∞∑
n=1

anz
�n .
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